• “两学一做”在山西——黄河新闻网 2019-07-13
  • 内地生报读香港高校本科人数持续下跌 2019-07-13
  • 【学习时刻】人民大学王义桅:金砖合作的“自信”与“自觉” 2019-07-12
  • 女子请“私家侦探”被骗3万 警方循线捣毁诈骗团伙 2019-07-11
  • 【学习时刻】北交大马院院长韩振峰:高校思想政治工作必须牢牢把握三大根本问题 2019-07-11
  • 全国“非遗”保护工作先进名单公布 2019-07-01
  • 紫光阁中共中央国家机关工作委员会 2019-06-25
  • 杭州控烟令修改草案拟允许室内设吸烟区,控烟专家:跌破眼镜 2019-06-25
  • 挪用近30万报纸征订款赌博 河南一报社聘用制干部获刑 2019-06-23
  • 2016年,有1145家上市公司大小非减持了3600亿元,还有210名上市公司高管减持了1400亿元。IPO已成了造就成千上万个十亿、百亿富豪的捷径, 2019-06-21
  • 专家“把脉”中国电影市场:提升品质方能逆袭 2019-06-21
  • “善款资助副局长儿子留学”真相须尽快落地 2019-06-19
  • 21岁女护士失联2天后确认遇害 嫌疑人为其前男友 2019-06-19
  • 中国地质公园名录旅行地中国国家地理网 2019-06-13
  • 玄关运用有四大原则 用的好才能财旺挡煞聚财 ——凤凰网房产 2019-06-10
  • 随笔-92  评论-6  文章-1 

    谁有广东11选5微信群:java基础类型源码解析之HashMap

    广东十一选5一定牛 www.aavbg.com 终于来到比较复杂的HashMap,由于内部的变量,内部类,方法都比较多,没法像ArrayList那样直接平铺开来说,因此准备从几个具体的角度来切入。

    桶结构

    HashMap的每个存储位置,又叫做一个桶,当一个Key&Value进入map的时候,依据它的hash值分配一个桶来存储。

    看一下桶的定义:table就是所谓的桶结构,说白了就是一个节点数组。

    transient Node<K,V>[] table;
    transient int size;

    节点

    HashMap是一个map结构,它不同于Collection结构,不是存储单个对象,而是存储键值对。
    因此内部最基本的存储单元是节点:Node。

    节点的定义如下:

    class Node<K,V> implements Map.Entry<K,V> {
        final int hash;
        final K key;
        V value;
        Node<K,V> next;
    }

    可见节点除了存储key,vaue,hash三个值之外,还有一个next指针,这样一样,多个Node可以形成一个单向列表。这是解决hash冲突的一种方式,如果多个节点被分配到同一个桶,可以组成一个链表。

    HashMap内部还有另一种节点类型,叫做TreeNode:

    class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
        TreeNode<K,V> parent;  // red-black tree links
        TreeNode<K,V> left;
        TreeNode<K,V> right;
        TreeNode<K,V> prev;    // needed to unlink next upon deletion
        boolean red;
     }

    TreeNode是从Node继承的,它可以组成一棵红黑树。为什么还有这个东东呢?上面说过,如果节点的被哈希到同一个桶,那么可能导致链表特别长,这样一来访问效率就会急剧下降。 此时如果key是可比较的(实现了Comparable接口),HashMap就将这个链表转成一棵平衡二叉树,来挽回一些效率。在实际使用中,我们期望这种现象永远不要发生。

    有了这个知识,就可以看看HashMap几个相关常量定义了:

    static final int TREEIFY_THRESHOLD = 8;
    static final int UNTREEIFY_THRESHOLD = 6;
    static final int MIN_TREEIFY_CAPACITY = 64;
    • TREEIFY_THRESHOLD,当某个桶里面的节点数达到这个数量,链表可转换成树;
    • UNTREEIFY_THRESHOLD,当某个桶里面数低于这数量,树转换回链表;
    • MIN_TREEIFY_CAPACITY,如果桶数量低于这个数,那么优先扩充桶的数量,而不是将链表转换成树;

    put方法:Key&Value

    插入接口:

    public V put(K key, V value) {
        return putVal(hash(key), key, value, false, true);
    }
    final int hash(Object key) {
        int h;
        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
    }

    put方法调用了私有方法putVal,不过值得注意的是,key的hash值不是直接用的hashCode,最终的hash=(hashCode右移16)^ hashCode。

    在将hash值映射为桶位置的时候,取的是hash值的低位部分,这样如果有一批key的仅高位部分不一致,就会聚集的同一个桶里面。(如果桶数量比较少,key是Float类型,且是连续的整数,就会出现这种case)。

    执行插入的过程:

    V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                       boolean evict) {
            Node<K,V>[] tab; Node<K,V> p; int n, i;
            
            if ((tab = table) == null || (n = tab.length) == 0)
                n = (tab = resize()).length;
    
            //代码段1
            if ((p = tab[i = (n - 1) & hash]) == null)
                tab[i] = newNode(hash, key, value, null);            
            else {
                Node<K,V> e; K k;
                //代码段2
                if (p.hash == hash &&
                    ((k = p.key) == key || (key != null && key.equals(k))))
                    e = p;
                //代码段3    
                else if (p instanceof TreeNode)
                    e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
                else {
                    //代码段4
                    for (int binCount = 0; ; ++binCount) {
                        //代码段4.1
                        if ((e = p.next) == null) {
                            p.next = newNode(hash, key, value, null);
                            if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                                treeifyBin(tab, hash);
                            break;
                        }
                        //代码段4.2
                        if (e.hash == hash &&
                            ((k = e.key) == key || (key != null && key.equals(k))))
                            break;
                        p = e;
                    }
                }
                //代码段5
                if (e != null) { // existing mapping for key
                    V oldValue = e.value;
                    if (!onlyIfAbsent || oldValue == null)
                        e.value = value;
                    afterNodeAccess(e);
                    return oldValue;
                }
            }
            //代码段6
            ++modCount;
            if (++size > threshold)
                resize();
            afterNodeInsertion(evict);
            return null;
        }
    • 最开始的一段处理桶数组还没有分配的情况;
    • 代码段1: i = (n - 1) & hash,计算hash对应的桶位置,因为n是2的冥次,这是一种高效的取模操作;如果这个位置是空的,那么直接创建Node放进去就OK了;否则这个冲突位置的节点记为P;
    • 代码段2:如果节点P的key和传入的key相等,那么说明新的value要放入一个现有节点里面,记为e;
    • 代码段3:如果节点P是一棵树,那么将key&value插入到这个棵树里面;
    • 代码段4:P是链表头,或是单独一个节点,两种情况,都可以通过扫描链表的方式来做;
    • 代码段4.1:如果链表到了尾部,插入一个新节点,同时如果有必要,将链表转成树;
    • 代码段4.2:如果链表中找到了相等的key,和代码段2一样处理;
    • 代码段5:将value存入节点e
    • 代码段6:如果size超过某个特定值,要调整桶的数量,关于resize的策略在下文会讲

    remove方法

    了解了put方法,remove方法就容易了,直接讲解私有方法removeNode吧。

    public V remove(Object key) {
        Node<K,V> e;
        return (e = removeNode(hash(key), key, null, false, true)) == null ?
            null : e.value;
    }
        
    Node<K,V> removeNode(int hash, Object key, Object value,
                                   boolean matchValue, boolean movable) {
        Node<K,V>[] tab; Node<K,V> p; int n, index;
        
        //代码段1
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (p = tab[index = (n - 1) & hash]) != null) {
            
            //代码段2:
            Node<K,V> node = null, e; K k; V v;
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                node = p;
                
            //代码段3:
            else if ((e = p.next) != null) {
                //代码段3.1:
                if (p instanceof TreeNode)
                    node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
                else {
                    //代码段3.2:
                    do {
                        if (e.hash == hash &&
                            ((k = e.key) == key ||
                             (key != null && key.equals(k)))) {
                            node = e;
                            break;
                        }
                        p = e;
                    } while ((e = e.next) != null);
                }
            }
            
            //代码段4:
            if (node != null && (!matchValue || (v = node.value) == value ||
                                 (value != null && value.equals(v)))) {                 
                //代码段4.1:
                if (node instanceof TreeNode)
                    ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
                //代码段4.2:
                else if (node == p)
                    tab[index] = node.next;
                //代码段4.3:
                else
                    p.next = node.next;
                ++modCount;
                --size;
                afterNodeRemoval(node);
                return node;
            }
        }
        return null;
    }
    • 代码段1:这个if条件在判断hash对应的桶是否空的,如果是话,那么map里面肯定就没有这个key;否则第一个节点记为P;
    • 代码段2:如果P节点的key与参数key相等,找到了要移除的节点,记为node;
    • 代码段3:扫描桶里面的其他节点
    • 代码段3.1:如果桶里面这是一颗树,执行树的查找逻辑;
    • 代码段3.2: 执行链表扫描逻辑;
    • 代码段4:如果找到了node,那么尝试删除它
    • 代码段4.1:如果是树节点,执行树的节点删除逻辑;
    • 代码段4.2:node是链表头结点,将node.next放入桶就ok;
    • 代码段4.3:删除链表中间节点

    rehash

    rehash就是重新分配桶,并将原有的节点重新hash到新的桶位置。

    先看两个和桶的数量相关的成员变量

    final float loadFactor;
    int threshold;
    • loadFactor 负载因子,是创建HashMap时设定的一个值,即map所包含的条目数量与桶数量的比值上限;一旦map的负载达到这个值,就需要扩展桶的数量;
    • threshold map的数量达到这个值,就需要扩展桶,它的值基本上等于桶的容量*loadFactor,我感觉就是一个缓存值,加快相关的操作,不用每次都去计算;

    桶的扩展策略,见下面的函数,如果需要的容量是cap,真实扩展的容量是大于cap的一个2的冥次。
    这样依赖,每次扩展,增加的容量都是2的倍数。

    static final int tableSizeFor(int cap) {
        int n = cap - 1;
        n |= n >>> 1;
        n |= n >>> 2;
        n |= n >>> 4;
        n |= n >>> 8;
        n |= n >>> 16;
        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
    }

    这是具体的扩展逻辑

    Node<K,V>[] resize() {
        
         //此处省略了计算newCap的逻辑
    
        Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
        table = newTab;
        if (oldTab != null) {
            for (int j = 0; j < oldCap; ++j) {
                Node<K,V> e;
                if ((e = oldTab[j]) != null) {
                    oldTab[j] = null;
                    
                    //分支1
                    if (e.next == null)
                        newTab[e.hash & (newCap - 1)] = e;
                    //分支2
                    else if (e instanceof TreeNode)
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                    //分支3
                    else { // preserve order
                        //此处省略了链表拆分逻辑   
                    }
            }
        }
        return newTab;
    }
    • 首先分配新的桶数组;
    • 扫描旧的桶,将元素迁移过来;
    • 分支1:桶里面只有一个新的节点,那么放入到新桶对应的位置即可;
    • 分支2:桶里面是一棵树,执行树的拆分逻辑
    • 分支3:桶里面是一个链表,执行链表的拆分逻辑;

    由于新桶的数量是旧桶的2的倍数,所以每个旧桶都能对应2个或更多的新桶,互不干扰。 所以上面的迁移逻辑,并不需要检查新桶里面是否有节点。

    可见,rehash的代价是很大的,最好在初始化的时候,能够设定一个合适的容量,避免rehash。

    最后,虽然上面的代码没有体现,在HashMap的生命周期内,桶的数量只会增加,不会减少。

    迭代器

    所有迭代器的核心就是这个HashIterator

    abstract class HashIterator {
        Node<K,V> next;        // next entry to return
        Node<K,V> current;     // current entry
        int expectedModCount;  // for fast-fail
        int index;             // current slot
    
        final Node<K,V> nextNode() {
            Node<K,V>[] t;
            Node<K,V> e = next;
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
            if (e == null)
                throw new NoSuchElementException();
            if ((next = (current = e).next) == null && (t = table) != null) {
                do {} while (index < t.length && (next = t[index++]) == null);
            }
            return e;
        }
    }

    简单起见,只保留了next部分的代码。原理很简单,next指向下一个节点,肯定处在某个桶当中(桶的位置是index)。那么如果同一个桶还有其他节点,那么一定可以顺着next.next来找到,无论这是一个链表还是一棵树。否则扫描下一个桶。

    有了上面的节点迭代器,其他用户可见的迭代器都是通过它来实现的。

    final class KeyIterator extends HashIterator
        implements Iterator<K> {
        public final K next() { return nextNode().key; }
    }
    
    final class ValueIterator extends HashIterator
        implements Iterator<V> {
        public final V next() { return nextNode().value; }
    }
    
    final class EntryIterator extends HashIterator
        implements Iterator<Map.Entry<K,V>> {
        public final Map.Entry<K,V> next() { return nextNode(); }
    }

    视图

    KeySet的部分代码:这并不是一个独立的Set,而是一个视图,它的接口内部访问的都是HashMap的数据。

    final class KeySet extends AbstractSet<K> {
        public final int size()                 { return size; }
        public final void clear()               { HashMap.this.clear(); }
        public final Iterator<K> iterator()     { return new KeyIterator(); }
        public final boolean contains(Object o) { return containsKey(o); }
        public final boolean remove(Object key) {
            return removeNode(hash(key), key, null, false, true) != null;
        }
    }

    EntrySet、Values和KeySet也是类似的,不再赘述。

    要点总结

    1、key&value存储在节点中;
    2、节点有可能是链表节点,也有可能是树节点;
    3、依据key哈希值给节点分配桶;
    4、如果桶里面有多个节点,那么要么形成一个链表,要么形成一颗树;
    5、装载因子限制的了节点和桶的数量比例,必要时会扩展桶的数量;
    6、桶数量必然是2的冥次,重新分配桶的过程叫做rehash,这是很昂贵的操作;

    posted on 2019-07-10 18:29 longhuihu 阅读(...) 评论(...) 编辑 收藏

  • “两学一做”在山西——黄河新闻网 2019-07-13
  • 内地生报读香港高校本科人数持续下跌 2019-07-13
  • 【学习时刻】人民大学王义桅:金砖合作的“自信”与“自觉” 2019-07-12
  • 女子请“私家侦探”被骗3万 警方循线捣毁诈骗团伙 2019-07-11
  • 【学习时刻】北交大马院院长韩振峰:高校思想政治工作必须牢牢把握三大根本问题 2019-07-11
  • 全国“非遗”保护工作先进名单公布 2019-07-01
  • 紫光阁中共中央国家机关工作委员会 2019-06-25
  • 杭州控烟令修改草案拟允许室内设吸烟区,控烟专家:跌破眼镜 2019-06-25
  • 挪用近30万报纸征订款赌博 河南一报社聘用制干部获刑 2019-06-23
  • 2016年,有1145家上市公司大小非减持了3600亿元,还有210名上市公司高管减持了1400亿元。IPO已成了造就成千上万个十亿、百亿富豪的捷径, 2019-06-21
  • 专家“把脉”中国电影市场:提升品质方能逆袭 2019-06-21
  • “善款资助副局长儿子留学”真相须尽快落地 2019-06-19
  • 21岁女护士失联2天后确认遇害 嫌疑人为其前男友 2019-06-19
  • 中国地质公园名录旅行地中国国家地理网 2019-06-13
  • 玄关运用有四大原则 用的好才能财旺挡煞聚财 ——凤凰网房产 2019-06-10
  • 现金之王电子游戏 必胜国际娱乐城怎么赢 黑码吗6肖中特 7月30彩票开奖 广东十一选五前二组合 陕西快乐10分几点开始几点停止售票 福彩助手软件 大乐透开奖结果查询 11选5体彩十一运夺金 今天吉林十一选五前三直 六肖中特公式 温州福利彩票中心电话 江西福彩 青海快三7号走势图 河南快赢481分析